专业的信息化与通信融合产品选型平台及垂直门户
注册 登陆 设为首页 加入收藏
首页 企业新闻 招标信息 行业应用 厂商专区 活动 商城 中标信息

资讯
中心

新闻中心 人物观点
厂商专区 市场分析
行业
应用
政府机构 能源产业 金融机构
教育科研 医疗卫生 交通运输
应用
分类
统一协作 呼叫客服 IP语音 视频会议 智能管理 数据库
数字监控 信息安全 IP储存 移动应用 云计算 物联网

TOP

大数据相关的十大技术
2018-11-20 21:08:49 来源:OFweek物联网 作者:【
关键词:大数据
 
大数据技术指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

  大数据技术指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

  大数据相关的十大技术

  1、Java编程技术

  Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Java基础是必不可少的!

  2、Linux命令

  对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令。真正的大数据工程师,linux命令是横着写很长,不是一句一句执行的,尤其是大数据工程师需要检测cpu,内存,网络IO等各种开销,就需要掌握各种命令,命令主要分为这几种,一是查看各种进程的相关信息,其中包括cpu或者内存等从高到底,或者是前十等等。二是排查故障,结合linux和java的各种命令快速定位到问题出现的关键地方。三是排除系统长时间使用过慢原因等。

  3、HBase

  HBase是Hadoop的数据库,HBase是一个分布式的、面向列的开源数据库,它提供了随机,实时读/写访问大数据,并进行了优化承载非常大的数据表 - 数十亿行乘以百万列 -,实现服务器硬件之上集群。不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,在其核心Apache HBase是一个分布式的面向列的数据库,属于谷歌的Bigtable:Apache HBase在Hadoop和HDFS之上提供了类似于Bigtable的能力。大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。

  4、Hive

  Hive是基于Hadoop的一个数据仓库工具,方便简单的数据汇总工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。同时,这语言也可以让传统的map / reduce程序员嵌入他们的自定义maperhe reducer.对于Hive需掌握其安装、应用及高级操作等。

  5、ZooKeeper

  ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,一种集中式的服务(负载平衡器),提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,并提供团体服务。Apache ZooKeeper协调运行在Hadoop集群上的分布式应用程序。在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。

  6、Avro与Protobuf

  Avro与Protobuf均是数据序列化系统,可以提供丰富的数据结构类型,十分适合做数据存储,还可进行不同语言之间相互通信的数据交换格式,学习大数据,需掌握其具体用法。

  7、Cassandra

  Apache Cassandra是一个高性能,可扩展性和高线性可用的数据库,可以运行在服务器或云基础设施上,为关键任务数据提供完美的平台,。 Cassandra支持多个数据中心之间复制是同类产品中最好,为用户提供更低的延迟,甚至不惧怕停电。 Cassandra的数据模型提供了便利的列索引,高性能试图和强大的内置缓存。

  8、Kafka

  Kafka是一种高吞吐量的分布式发布订阅消息系统,其在大数据开发应用上的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。大数据开发需掌握Kafka架构原理及各组件的作用和使用方法及相关功能的实现!

  9、Chukwa

  是一个开源大型分布式系统的数据采集监视系统。它是建立在Hadoop分布式文件系统(HDFS)和Map/ Reduce框架之上,并继承了Hadoop的可伸缩性和健壮性。 Chukwa还包括一个灵活而强大的工具包,用于显示,监测和分析结果,以便做出最佳地使用所收集的数据。

  10、Flume

  Flume是一款高可用、高可靠、分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。大数据开发需掌握其安装、配置以及相关使用方法。 

      

责任编辑:admin
免责声明:以上内容转载互联网平台或企业单位自行提供,对内容的真实性、准确性和合法性不负责,Voipchina网对此不承担任何法律责任。

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部

上一篇云数据中心的未来:无源光网络应用
下一篇公安大数据的下一个风口: 数据分..

热门文章

图片主题

最新文章

相关文章

广告位

Copyright@2003-2009 网络通信中国(原VoIP中国) 版权所有
联系方式:503927495@qq.com
  京ICP备05067673号-1 京公网安1101111101259