专业的信息化与通信融合产品选型平台及垂直门户
注册 登陆 设为首页 加入收藏
首页 企业新闻 招标信息 行业应用 厂商专区 活动 商城 中标信息

资讯
中心

新闻中心 人物观点
厂商专区 市场分析
行业
应用
政府机构 能源产业 金融机构
教育科研 医疗卫生 交通运输
应用
分类
统一协作 呼叫客服 IP语音 视频会议 智能管理 数据库
数字监控 信息安全 IP储存 移动应用 云计算 物联网

TOP

大数据、人工智能与其它的技术彼此的界限日益模糊
2018-07-17 17:08:03 来源:大数据观察 作者:【
关键词:人工智能 大数据
 
大数据、人工智能等概念由于商业炒作等多方面的原因,已经变得模糊不清了。许多具体的技术也被罩上了夺目的光环,或有意被赋予了能够引发奇妙想象的名字,如“深度学习”。

任何事物只有放在它所存在的环境中,才能准确理解它的本质。

  今天,大数据、人工智能等概念由于商业炒作等多方面的原因,已经变得模糊不清了。许多具体的技术也被罩上了夺目的光环,或有意被赋予了能够引发奇妙想象的名字,如“深度学习”。

  下面,我们来看一下信息技术产业中的不同要素,在从科学到应用的这个链条上,各自处于什么样的位置。为了不陷入不必要的细节而又能揭示本质,我们将这个链条分为五个环节:科学原理,基础共性技术,具体应用技术,基础系统原理/技术及具体应用系统,见图1。


图1 从科学原理到应用系统,图片来源:作者供图,下同

  科学原理是对基本运动规律的认识总结,而技术是对规律的运用。所以新的科学原理的提出,常常会对社会产生深刻而广泛的影响。正因为科学原理的意义如此之大,所以“科学”也常常被盗用。许多技术性的产出,也被带上了“科学”这个帽子。在计算机领域,图灵机与计算复杂性理论基本上属于科学原理这个范畴。也正因为如此,计算机才被冠以了“科学”的称谓。

  从根本上看,人工智能热潮在90年代的冷却,是因为人们在人工智能领域经过了几十年的努力,没有能够理解一般意义上的智能过程的本质,因而也就没有能够取得科学意义上的原理性突破,在理论上抽象出类似数字基本计算那样的基本智能操作,用以支撑更为高级复杂的智能过程。所以人工智能领域的产出,虽然丰富而且影响巨大,但是却始终没有达到科学原理的高度。

  其实,用智能体这个概念整合与人工智能相关的技术方法,也是没有办法的办法,显示出了这个领域的一种无奈的现实:只有实用的一些具体技术方法,缺少科学原理或基础共性技术的支撑,也没有基础性系统级的有效理论。这些年被热捧的“深度学习”,也是这个层面的技术。

  “深度学习”这个概念包括了深度信念网络、卷积神经网络、循环与递归网络等多种不同的具体网络模型与相应的算法,用来解决不同类型的问题。它们实际上是借助计算机的“暴力”计算能力,用大规模的、含有高达千万以上的可调参数的非线性人工神经网络,使用特定的“学习/训练”算法,通过对大量样本的统计处理,调整这些参数,实现非线性拟合(变换),从而实现对输入数据特征的提取与后续的分类等功能。

  它是解决特定类型问题的一些具体的方法,而不是具有像人那样的一般意义上的学习的能力,尽管这个名字确实引发了许多不了解这个技术的人的这方面的想象。其实,信息技术领域内的绝大部分技术,基本都属于这个层面,包括与大数据相关的技术,而且它们也都属于辅助智能性质的技术。所以,大数据、人工智能与其它的技术彼此的界限日益模糊。

  这些具体的实用性技术,包括“深度学习”(人工神经网络),常常是实验性技术,在应用于一个新的具体问题之前,我们无法确定它是否能够有效地解决这个问题,或者能够将问题解决到什么程度。

      

责任编辑:admin
免责声明:以上内容转载互联网平台或企业单位自行提供,对内容的真实性、准确性和合法性不负责,Voipchina网对此不承担任何法律责任。

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部

上一篇小计算大能量,新技术促使数据中..
下一篇爱立信:数据中心运维,如何实现..

热门文章

图片主题

最新文章

相关文章

广告位

Copyright@2003-2009 网络通信中国(原VoIP中国) 版权所有
联系方式:503927495@qq.com
  京ICP备05067673号-1 京公网安1101111101259