智能视频分析系统能够对视频区域内出现的运动目标自动识别出目标类型并跟踪,对目标进行标记并画出目标运动轨迹,能够同时监测同一场景里多个目标,可以根据防范目标的特点进行灵活设置;改变了以往视频“被动”监控的状态,不仅仅局限于提供视频画面,而且能主动对视频信息进行智能分析,识别和区分物体,可自定义事件类型,一旦发现异常情况
或者突发事件能及时的发出警报,其在安防领域的应用必然有助于克服了人力疲惫的局限性,从而更加有效地协助安全人员处理突发事件。
那是不是视频分析系统就是万能的呢?其存在哪些方面的不足呢?在实际环境中,光照变化无常、目标运动复杂性、遮挡、目标与背景颜色相似、杂乱背景等都会增加目标检测与跟踪算法设计的难度。我们可具体来看一下影响智能分析应用的几个方面:
背景的复杂性
光照变化引起目标颜色与背景颜色的变化,可能造成虚假检测与错误跟踪。采用不同的色彩空间可以减轻光照变化对算法的影响,但无法完全消除其影响;场景中前景目标与背景的相互转换,与行李的放下、拿起,车辆的启动与停止;目标与背景颜色相似时会影响目标检测与跟踪的效果;目标阴影与背景颜色存在差别通常被检测为前景,这给运动目标的分割与特征提取带来困难。
目标特征的取舍
序列图像中包含大量可用于目标跟踪的特征信息,如目标的运动、颜色、边缘以及纹理等。但目标的特征信息一般会随时变化的,选取合适的特征信息保证跟踪的有效性比较困难。
遮挡问题
遮挡是目标跟踪中必须解决的难点问题。运动目标被部分或完全遮挡,又或是多个目标相互遮挡时,目标部分不可见会造成目标信息缺失,影响跟踪的稳定性。为了减少遮挡带来的歧义性问题,必须正确处理遮挡时特征与目标间的对应关系。大多数系统一般是通过统计方法预测目标的位置、尺度等,都不能很好地处理较严重的遮挡问题。
兼顾实时性与健壮性
序列图像包含大量信息,要保证目标跟踪的实时性要求,必须选择计算量小的算法。健壮性是目标跟踪的另一个重要性能,提高算法的健壮性就是要使算法对复杂背景、光照变化和遮挡等情况有较强的适应性,而这又要以复杂的运算为代价。