专业的信息化与通信融合产品选型平台及垂直门户
注册 登陆 设为首页 加入收藏
首页 企业新闻 招标信息 行业应用 厂商专区 活动 商城 中标信息

资讯
中心

新闻中心 人物观点
厂商专区 市场分析
行业
应用
政府机构 能源产业 金融机构
教育科研 医疗卫生 交通运输
应用
分类
统一协作 呼叫客服 IP语音 视频会议 智能管理 数据库
数字监控 信息安全 IP储存 移动应用 云计算 物联网

TOP

AI安防之思:应用突围的三大问题与挑战
2020-02-01 19:15:14 来源:智安物联网 作者:【
关键词:安防行业
 
安防行业近20年的发展经过了从模拟到数字,从标清到高清的变革,目前进入了人工智能的变革时代。数字和高清的变革目标明确,产业界没有过多的犹豫和反复,几乎是发令枪一响,赛道上的所有选手奔着同一个方向和目标努力,各种配套、各种标准有序跟进,商业落地的效果也很显著,安防行业重新洗牌,改变小而散的状态,形成具备很强落地和创新能力的安防产业头部企业群格局。
  安防行业近20年的发展经过了从模拟到数字,从标清到高清的变革,目前进入了人工智能的变革时代。数字和高清的变革目标明确,产业界没有过多的犹豫和反复,几乎是发令枪一响,赛道上的所有选手奔着同一个方向和目标努力,各种配套、各种标准有序跟进,商业落地的效果也很显著,安防行业重新洗牌,改变小而散的状态,形成具备很强落地和创新能力的安防产业头部企业群格局。有了前述良好的行业基础,再凭借安防以视频为核心的天然优势,安防成为了人工智能落地的良好选择。
  据艾瑞咨询统计,2018年中国人工智能赋能实体经济各产业的份额中,“AI+安防”占比超过50%。人工智能在安防行业的落地增速也在持续加速,安防企业中的AI化所占比例在持续增加,据艾瑞咨询披露,2018年,我国AI+安防软硬件市场规模达到135亿元,部分头部安防厂商AI业务在总营收中占比从大约4%提升至超过8%,部分典型AI公司安防业务则占接近一半的营业收入。2018年城市公共安防中AI渗透率达到2.6%。预计2019年市场仍将保持高增速,到十三五收官之年2020年增速开始稳定,届时市场规模可达到453亿元(城市公共安防AI渗透率达到11%),2022年市场规模有望突破700亿元(城市公共安防AI渗透率达到25%)。
  尽管人工智能在安防行业开了一个好头,落地好,增速快,但并不意味着人工智能在安防行业的发展过程一帆风顺,发展前路一马平川,有很多的挑战和问题需要解决。以下从工程化的挑战、标准化的缺失和AI需求的碎片化三个角度阐述当前面临的问题和挑战。
  工程化的挑战
  纵观目前安防+AI落地好的场景,工程属性的问题解决得好是必要条件,前端的工程属性包括布点、工堪、立杆、安装、补光、调试等等,后端的工程属性主要是指数据的技战法。比如ITS的应用是一个典型的AI落地场景,人工智能最早在安防行业落地就是从ITS开始,前端的卡口和电警等设备,被明确地定义了工程属性参数,在停止线后多少距离布点、抓拍点至立杆距离多少,配什么样的镜头,抓拍几车道,补光灯强度要求多少,安装照射角度是什么,调试规范怎样等等,都有严格的工堪表格和实施规范。按这样的工程属性安装和调试的系统,再加上后端数据的技战法,可以尽可能地满足客户的需求。从ITS衍生的出入口停车场车辆管理系统,明确的工程化属性定义,加上后端的数据运维平台,是典型的to G端到to B端衍生的案例。
  再比如人脸识别相机,要求安装高度、人脸像素大小、补光等等。反过来思考,如果离开或者弱化这些工程化属性实施的可能性,人工智能在安防行业的落地还能继续发挥优势吗?宇视认为:首先,强调工程化本质上没有错,工程上意味着场景的准确定义和人工智能的可实施可复制;其次,算法的不断进步,以及用于算法训练的场景素材不断丰富,正在泛化人工智能的适应性能力,逐步减弱对工程化属性的依赖;再次,客户调整需求和对人工智能的期望值,比如使用两个泛智能的摄像机,代替一个工程属性极强的专业智能摄像机,抓拍率也许可以达到同样的效果,但降低了工程实施的难度和整体TCO。
  标准化的缺失
  一个行业的大发展离不开标准化的制定,标准化是现代大生产的必要条件,可以提升效率、科学管理、增进信息流通,以及孵化创新等。标准化工作对人工智能及其产业发展具有基础性、支撑性、引领性的作用,既是推动产业创新发展的关键抓手,也是产业竞争的制高点。世界发达国家纷纷在新一轮国际竞争中争取掌握主导权,围绕人工智能出台规划和政策,对人工智能核心技术、顶尖人才、标准规范等进行部署,加快促进人工智能技术和产业发展。主要科技企业不断加大资金和人力投入,抢占人工智能发展制高点。
  安防行业目前缺少人工智能的行业技术标准,去统一和规范人工智能在安防行业的落地和持续创新。比如人工智能芯片的算力标称,目前没有一个统一的标准去规范。各个厂家都有自己的标称测试评估体系,各芯片之间横向的对比标准缺失。如果想评估一款芯片的真正算力,目前的方法只能是通过花人力进行算法的实测对比。再比如人脸识别系统和以图搜图系统,各个厂家都有自己的算法和模型,假如一个客户使用了不同家的算法,后台数据侧的研判就会出现问题,不同厂家不同模型产生的数据之间不能互通,只能割裂地进行分析,这会给数据分析、设备扩容等等带来很大的麻烦。2018年1月,国家人工智能标准化总体组、专家咨询组成立大会召开。在会上,国家标准化管理委员会宣布成立国家人工智能标准化总体组、专家咨询组,负责全面统筹规划和协调管理我国人工智能标准化工作。
  AI需求的碎片化问题
  人工智能的大热,让人们对人工智能解决各行各业痛点的期望逐步加大。视频监控在迎来人工智能时代之前,主要是人工地查和看。因为有了人工智能的普及,人们会提出各种各样智能的需求:化工厂提出检测原料的跑冒滴漏,宠物店提出检测宠物,厨房提出检测不规范操作行为等等。旺盛的AI需求与碎片化AI的落地难形成了鲜明对比。要解决碎片化AI需求的落地难问题,算力、算法和数据是三个重要要素。同时,已经有人在尝试使用开放的训练平台去解决碎片化需求满足的问题,将与需求紧密相关的训练数据和应用场景问题交给需求提出方,平台发挥算力和算法的优势。
  结语
  总体来看,安防给人工智能的落地提供了很好的土壤,人工智能则给安防产业的发展提供了更广阔的舞台。有了人工智能的赋能,和视频为核心的技术联接,安防行业的边界变得模糊化,从智能安防链接到智能金融、智能零售、智慧教育、智能制造等等的跨界会越来越多和越来越频繁。
      

责任编辑:admin
免责声明:以上内容转载互联网平台或企业单位自行提供,对内容的真实性、准确性和合法性不负责,Voipchina网对此不承担任何法律责任。

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部

上一篇火神山“神迹”背后的中国安防力量
下一篇解密智慧安防未来六大趋势

热门文章

图片主题

最新文章

相关文章

广告位

Copyright@2003-2009 网络通信中国(原VoIP中国) 版权所有
联系方式:503927495@qq.com
  京ICP备05067673号-1 京公网安1101111101259