数据挖掘技术可以应用到陶瓷企业客户关系管理的许多领域,主要有客户获取、交叉销售、客户细分、客户盈利能力分析和客户流失分析等。
随着企业CRM系统的不断完善前、后台系统从接触中心所得到的数据日益增加,企业积累了大量的客户和产品销售数据。这些海量的数据使用传统的查询或分析工具往往不能识别其中有价值的信息,进而就不能为企业指定营销策略、开展营销活动提供决策支持,难以针对具体的客户开展一对一的服务。而数据挖掘恰好能够解决上述问题,所以数据挖掘在CRM中如何应用已经成为CRM领域一个非常热门的话题。
(一)数据挖掘在陶瓷企业交叉销售中的应用
交叉营销就是指向现有的客户提供新的产品和服务的营销过程。它的目标就是达到双赢的结果,即客户和商家都可以从中获益。客户获益是得到更好更贴切的服务质量,商家则是因为增加了销售量而获利。陶瓷企业和客户之间的关系是经常变动的,一旦一个人或者一个公司成为客户,就要尽力使这种客户关系趋于完美。一般来说可以通过这三种方法:
1.最长时间的保持这种关系
2.最多次数的和你的客户交易
3.最大数量的保证每次交易的利润
陶瓷企业和其客户之间的商业关系是一种持续不断的发展的关系,其间伴随着双方商业合作范围的扩展与收缩。如何更好地加强这种双向的合作,在可能的条件下与客户开展尽可能多的商业合作从而实现更大的商业利润是交叉营销所要达到的目的。使用数据挖掘技术进行交叉营销的分析是从分析现有客户的购买行为数据开始,首先得到关于现有客户消费习惯的数据。在寻找交叉营销机会前决定希望提供给客户哪些种类的产品和服务。然后收集数据,包括客户的个人信息(如年龄、收入、婚姻状况、住址等)和交易记录(如最近的收支情况、消费次数、消费类别等),另外还包括与分析相关的一些外部数据。
准备好所需的数据后,接着选择数据挖掘的算法进行建模,对每一种交叉营销的情况都建立一个模型,且对每种交叉营销的情况进行分析的过程都是独立的厂用来分析新的客户数据以预测出这些客户将来的行为。
经过对客户进行各种交叉营销模型的分析,得出客户在各种交叉营销方案中的评分,即可能接受这些交叉营销的程度。根据最终得到的评分矩阵(行表示客户,列表示客户在各种交叉营销方案下依模型计算的得分),确定给予特定的客户哪种交叉销售产品或服务,从而提高客户的价值。
(二)数据挖掘在陶瓷企业客户细分中的应用
客户细分(CLlstomer Segmentation)是指按照一定的标准将企业的现有客户划分为不同的客户群。SLlzanneDonne:认为:正确的客户细分能够有效地降低成本,同时获得更强、更有利可图的市场渗透。
针对不同的分析需求,可以对客户按照自然属性(年龄、职业、区域、职称、文化程度等)和行为属性(呼叫行为、消费行为等)进行群体划分,以便市场经营与决策人员针对不同的用户群采用不同的市场策略。客户细分的主要目标是:发现不同客户群体的特征。分析在某一目标下,按贡献度划分的客户群体分布。
客户细分的原理是将客户的属性采用分类分析技术分为若干类,对具有某一类行为特征的用户,分析其基本信息,找出客户属性与客户基本特征之间的潜在关系。分类将一组客户按照相似性划归成若干类别,使得属于同一类别的客户之间的距离尽可能小,而不同类别客户之间的距离尽可能大。对客户进行分类后,统计分析各个类别的行为特性,按照各个行为类别贡献度的大小对各个类别进行排序。客户细分特性按不同的目标有不同的客户群体分布,如消费行为在贡献度不同的客户群体中的分布百分比,呼叫行为的分布情况等等。
在CRM系统中,可以通过数据挖掘技术来进行客户细分,把大量的客户分成不同的类,每个类里的客户有相似的属性,而不同的类里的属性则不同。企业只需对属于同一类中的客户采取相同的个性化服务,即可大大降低企业的成本。
选择聚类算法来处理在陶瓷行业中的客户细分比较恰当。
(三)客户盈利能力分析
在客户群中,客户的盈利能力有很大的区别。如果不知道客户的盈利能力,则很难制定有效的营销策略,以获取最有价值的客户,或者提高有价值客户的忠诚度。数据挖掘技术可以用来预测在不同的市场活动情况下客户盈利能力的变化。它从客户的交易历史纪录中发现一些行为模式,并使用这些行为模式来预测客户盈利能力的高低,或者发现盈利能力较高的新客户。
(四)客户的获取
陶瓷企业的发展和壮大需要不断获得新客户、维持老客户。数据挖掘技术可以用来揭示客户的行为习惯和预测发现一些在不同情况下有相似行为的新客户,帮助建陶企业识别出这些潜在的客户群,并提高市场活动的响应率,使客户关系管理做到心中有数、有的放矢。数据挖掘技术还可以帮助市场营销人员完成对潜在客户的发现和筛选工作,把潜在的客户名单和这些客户感兴趣的营销,促销措施系统地结合起来为每一个客户提供个性化、一站式的服务,以不断地获取新客户。